Dakshita Khurana

Email: dakshita@illinois.edu
WebURL: https://www.dakshitakhurana.com/

Research Interests: Cryptography, Theoretical Computer Science.

Employment

2019 –	\diamond	University of Illinois Urbana-Champaign; Assistant Professor of Computer Science.
2018 – 19	\diamond	Microsoft Research, New England; Postdoctoral Researcher.

Education

2018	\diamond	Ph.D. in Computer Science at the University of California, Los Angeles.
2014	\diamond	M.S. in Computer Science at the University of California, Los Angeles.
2012	\diamond	B. Tech. in Electrical Engineering with a Minor in Computer Science at the Indian Institute of Technology (IIT) Delhi, India.

Selected Honors

	NEE CADEED Award. Cruntagraphic Droofs Outside the Black Box
2023	So NSF CAREER Award: Cryptographic Proofs, Outside the Black-Box.
	On the List of Teachers Ranked as Excellent for Spring 2023 at UIUC.
2022	IIT Delhi Graduate of Last Decade (GOLD) Award.
	◊ DARPA Forward Riser.
	♦ On the List of Teachers Ranked as Excellent for Fall 2022 at UIUC.
2021	◊ Visa Research Faculty Award.
	◊ Paper awarded Long Plenary Talk at Quantum Information Processing QIP'21.
	• On the List of Teachers Ranked as Excellent for Spring 2021 at UIUC.
2020	♦ On the List of Forbes 30 under 30 in Science.
	◊ Google Research Fellow at the Simons Institute, Berkeley.
2019	On the List of Teachers Ranked as Excellent for Fall 2019 at UIUC.
	♦ Paper invited to the SIAM J. Computing Special Issue for STOC 2019.
2018	OUCLA CS Outstanding Graduating PhD Student Award.
	 Dissertation Year Fellowship, University of California Los Angeles.
	◊ Symantec Outstanding Graduate Student Research Award.
2017	♦ Paper invited to the SIAM J. Computing Special Issue for FOCS 2017.
	CISCO Outstanding Graduate Student Research Award.

Publications

- 1. Bartusek, J. & Khurana, D. (2023). Cryptography with certified deletion. *Quantum Information Processing, QIP, 2023. In Advances in Cryptology, CRYPTO 2023.*
- 2. Bartusek, J., Khurana, D. & Poremba, A. (2023). Publicly-verifiable deletion via target-collapsing functions. *In advances in cryptology, CRYPTO 2023.*
- 3. Bartusek, J., Khurana, D. & Srinivasan, A. (2023). Secure computation with shared EPR pairs (or: How to teleport in zero-knowledge). *In Advances in Cryptology, CRYPTO 2023*.
- 4. Ishai, Y., Khurana, D., Sahai, A. & Srinivasan, A. (2023b). Round-optimal black-box mpc in the plain model. *In Advances in Cryptology, CRYPTO 2023.*
- 5. Bartusek, J., Garg, S., Khurana, D. & Roberts, B. (2023). Blind delegation with certified deletion. *Quantum Information Processing, QIP 2023.*
- 6. Agarwal, A., Bartusek, J., Khurana, D. & Kumar, N. (2023). A new framework for quantum oblivious transfer. *In Advances in Cryptology EUROCRYPT 2023*.
- 7. Garg, R., Khurana, D., Lu, G. & Waters, B. (2023). On non-uniform security for black-box non-interactive CCA commitments. *In Advances in Cryptology EUROCRYPT 2023*.
- 8. Ishai, Y., Khurana, D., Sahai, A. & Srinivasan, A. (2023a). Black-box reusable NISC with random oracles. *In Advances in Cryptology EUROCRYPT 2023*.
- 9. Canetti, R., Chakraborty, S., Khurana, D., Kumar, N., Poburinnaya, O. & Prabhakaran, M. (2022). COA-secure obfuscation and applications. *In Advances in Cryptology, EUROCRYPT 2022.*
- 10. Hulett, J., Jawale, R., Khurana, D. & Srinivasan, A. (2022). SNARGS for P from sub-exponential DDH and QR. *In Advances in Cryptography, EUROCRYPT 2022.*
- II. Ishai, Y., Khurana, D., Sahai, A. & Srinivasan, A. (2022a). Round optimal black-box protocol compilers. *In Advances in Cryptology, EUROCRYPT 2022.*
- 12. Ishai, Y., Khurana, D., Sahai, A. & Srinivasan, A. (2022b). Round-optimal black-box secure computation from two-round malicious ot. *In Theory of Cryptography Conference, TCC 2022.*
- 13. Badrinarayanan, S., Ishai, Y., Khurana, D., Sahai, A. & Wichs, D. (2022). Refuting the dream XOR lemma via ideal obfuscation and resettable MPC. *In the Information Theory Conference, ITC 2022.*
- 14. Jawale, R., Kalai, Y. T., Khurana, D. & Zhang, R. (2021). SNARGs and PPAD hardness from sub-exponential LWE. *In Symposium on the Theory of Computing, STOC 2021.*
- Bartusek, J., Coladangelo, A., Khurana, D. & Ma, F. (2021b). One-way functions imply secure computation in a quantum world. *In Advances in Cryptology, CRYPTO 2021*. Long Plenary at Quantum Information Processing, QIP 2021. Invited Talk at QCrypt 2021.

- 16. Bartusek, J., Coladangelo, A., Khurana, D. & Ma, F. (2021a). On the round complexity of two-party quantum computation. *In Advances in Cryptology CRYPTO 2021, Quantum Information Processing QIP, 2021, and QCrypt 2021.*
- 17. Chatterjee, R., Garg, S., Hajiabadi, M., Khurana, D., Liang, X., Malavolta, G., Pandey, O. & Shiehian, S. (2021). Compact ring signatures from Learning with Errors. *In Advances in Cryptology, CRYPTO 2021*.
- 18. Ishai, Y., Khurana, D., Sahai, A. & Srinivasan, A. (2021). On the round complexity of black-box secure MPC. *In Advances in Cryptology, CRYPTO 2021*.
- 19. Khurana, D. & Srinivasan, A. (2021). Improved computational extractors and their applications. In Advances in Cryptology, CRYPTO 2021.
- 20. Agarwal, A., Bartusek, J., Goyal, V., Khurana, D. & Malavolta, G. (2021b). Two-round maliciously secure computation with super-polynomial simulation. *In Theory of Cryptography Conference, TCC 2021*.
- 21. Khurana, D. (2021). Non-interactive distributional indistinguishability (NIDI) and non-malleable commitments. *In Advances in Cryptography, EUROCRYPT 2021*.
- 22. Khurana, D. & Waters, B. (2021). On the CCA upgradeability of public-key infrastructure. *In international conference on practice and theory of public-key cryptography PKC 2021*.
- 23. Agarwal, A., Bartusek, J., Goyal, V., Khurana, D. & Malavolta, G. (2021a). Post-quantum multi-party computation. *In Advances in Cryptography, EUROCRYPT 2021*.
- 24. Garg, R., Lu, G., Khurana, D. & Waters, B. (2021). Black-box non-interactive non-malleable commitments. *In Advances in Cryptography, EUROCRYPT 2021*.
- 25. Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D. & Sahai, A. (2020). Statistical zap arguments. *In Advances in Cryptology, EUROCRYPT 2020*.
- 26. Garg, A., Kalai, Y. & Khurana, D. (2020). Computational extractors with negligible error in the crs model. *In Advances in Cryptology, EUROCRYPT 2020*.
- 27. Khurana, D. & Mughees, M. H. (2020). On statistical security in two-party computation. *In Theory of Cryptography Conference, TCC 2020*.
- 28. Bitansky, N., Khurana, D. & Paneth, O. (2020). Weak zero-knowledge beyond the black-box barrier. *In Symposium on the Theory of Computing, STOC 2019.* Published by invitation in the SIAM Journal on Computing (SICOMP), 2022, Special Issue for STOC 2019.
- 29. Kalai, Y. T. & Khurana, D. (2018). Non-interactive non-malleability from quantum supremacy. *In Advances in Cryptology, CRYPTO 2019.*
- 30. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y., Khurana, D. & Sahai, A. (2018). Promise zero-knowledge and its applications to round-optimal MPC. *In Advances in Cryptology, CRYPTO 2018.*

- 31. Badrinarayanan, S., Kalai, Y., Khurana, D., Sahai, A. & Wichs, D. (2018). Non-interactive delegation for low-space non-deterministic computation. *In Symposium on the Theory of Computing, STOC 2018.*
- 32. Kalai, Y., Khurana, D. & Sahai, A. (2018). Statistical WI (and more) in 2 messages. *In Advances in Cryptology, EUROCRYPT 2018.*
- 33. Badrinarayanan, S., Khurana, D., Sahai, A. & Waters, B. (2018). Upgrading to functional encryption. In *Theory of Cryptography Conference, TCC 2018*.
- 34. Khurana, D., Ostrovsky, R. & Srinivasan, A. (2018). Round optimal black-box "Commit-and-Prove". In *Theory of Cryptography Conference, TCC 2018*.
- 35. Khurana, D. & Sahai, A. (2017). How to achieve non-malleability in one or two rounds. *In IEEE Foundations of Computer Science, FOCS 2017.* Invited to SIAM Journal on Computing (SICOMP) Special Issue for FOCS 2017.
- 36. Jain, A., Kalai, Y. T., Khurana, D. & Rothblum, R. (2017). Distinguisher-dependent simulation in two rounds and its applications. *In Advances in Cryptology, CRYPTO 2017*.
- 37. Badrinarayanan, S., Khurana, D., Ostrovsky, R. & Visconti, I. (2017). Unconditional UC-Secure Computation with (Stronger-Malicious) PUFs. *In Advances in Cryptology, EUROCRYPT 2017.*
- 38. Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D. & Sahai, A. (2017). Round optimal concurrent MPC via strong simulation. In *Theory of Cryptography Conference, TCC 2017*.
- 39. Khurana, D. (2017). Round optimal concurrent non-malleability from polynomial hardness. In *Theory of Cryptography Conference, TCC 2017.*
- 40. Goyal, V., Khurana, D. & Sahai, A. (2016). Breaking the three round barrier for non-malleable commitments. *In IEEE Annual Symposium on Foundations of Computer Science, FOCS 2016.*
- 41. Khurana, D., Kraschewski, D., Maji, H. K., Prabhakaran, M. & Sahai, A. (2016). All complete functionalities are reversible. *In Advances in Cryptology, EUROCRYPT 2016*.
- 42. Khurana, D., Maji, H. K. & Sahai, A. (2016). Secure computation from elastic noisy channels. *In Advances in Cryptology, EUROCRYPT 2016*.
- 43. Goyal, V., Khurana, D., Mironov, I., Pandey, O. & Sahai, A. (2016). Do distributed differentially-private protocols require oblivious transfer? In *International Colloquium on Automata, Languages, and Programming, ICALP 2016*.
- 44. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B. & Zhandry, M. (2016). How to generate and use universal samplers. In *Advances in Cryptology, ASIACRYPT 2016*.
- 45. Agrawal, S., Ishai, Y., Khurana, D. & Paskin-Cherniavsky, A. (2015). Statistical randomized encodings: A complexity theoretic view. In *International Colloquium on Automata, Languages, and Programming, ICALP 2015*.
- 46. Khurana, D., Rao, V. & Sahai, A. (2015). Multi-party key exchange for unbounded parties from indistinguishability obfuscation. In *Advances in Cryptology, ASIACRYPT 2015*.

47. Khurana, D., Maji, H. K. & Sahai, A. (2014). Black-box separations for differentially private protocols. In *Advances in Cryptology, ASIACRYPT 2014*.

Invited Talks

- I. How to Certifiably Delete a Secret. Simons Institute Workshop on Cryptography from Minimal Assumptions; *May 2023.*
- 2. Cryptography with Certified Deletion. CMU Cylab Cryptography Seminar; Nov 2022.
- 3. Quantum Cryptography from Minimal Assumptions. Invited Tutorial at the UCLA IPAM Graduate Summer School on Post-quantum and Quantum Cryptography; *July 2022*.
- 4. From Deletion to Secure Computation and Back. **Spotlight Talk at the Information Theoretic Cryptography Conference, Boston**; *July 2022.*
- 5. SNARGs and PPAD Hardness from Sub-exponential DDH and QR. **Boston Crypto Day**; *July 2022.*
- 6. Quantum Oblivious Transfer from One-way Functions. Invited Talk at QCrypt; Aug 2021.
- 7. On Removing Interaction in Non-Malleable Commitments. MIT Cryptography and Information Security (CIS) Seminar; *Apr 2021.*
- 8. Secure Federated Learning for Clinical Diagnostics with Applications to the COVID-19 Pandemic. **C3.AI DTI Virtual Symposium**; *Jan 2021*.
- 9. SNARGs and PPAD Hardness from Sub-exponential LWE. TIFR School of Technology and Computer Science Colloquium; *Dec 2020.*
- 10. Secure Federated Learning for Clinical Diagnostics. Arches COVID Seminar; Nov 2020.
- II. Post-quantum Multi-party Computation. Theory and Practice of Multiparty Computation Workshop (TPMPC) at Aarhus University; *May 2020.*
- 12. New Techniques in Zero-Knowledge. Trends in TCS Workshop, TTI Chicago; Jan 2020.
- 13. Two-Message Statistically Private Arguments. Simons Institue Workshop on Probabilistically Checkable and Interactive Proofs; *Sep 2019.*
- 14. Weak Zero-Knowledge Beyond the Black-Box Barrier. Carnegie Mellon University Theory talk; *Jun 2019.*
- 15. Quantum Advantage and Classical Cryptography. **Charles River Crypto Day at Northeastern University**; *May 2019.*
- 16. New Techniques to Overcome Barriers in Simulation. Indian Institute of Technology Mumbai, India; *Dec 2018*.
- 17. Breaking Simulation Barriers. University of Illinois Urbana-Champaign; Apr 2018.

- 18. On Cryptographic Proof Systems. Caltech CMS Theory Seminar; Dec 2017.
- 19. New Techniques for Extraction. South California Theory Day; Nov 2017.
- 20. The Virtues of Two-Message OT. Boston University Crypto Seminar; Sep 2017.
- 21. Distinguisher-Dependent Simulation. DIMACS Workshop on Outsourcing Computation Securely, Rutgers; *Jul 2017.*
- 22. How to Achieve Non-Malleability in One or Two Rounds. MIT Cryptography and Information Security (CIS) Seminar; *Jun 2017.*
- 23. Birthday Simulation from Exponential Hardness, and its Applications. New York Crypto Day at Cornell Tech; *May 2017.*
- 24. Two-Message Non-Malleable Commitments. UCSD Theory Seminar; Nov 2016.
- 25. How to Generate and Use Universal Samplers. Stanford DIMACS Workshop on Cryptography and Software Obfuscation; *Nov 2016.*
- 26. Breaking the Three Round Barrier for Non-Malleable Commitments. SIMONS Berkeley Cryptography Reunion Workshop; *Aug 2016.*
- 27. Breaking the Three Round Barrier for Non-Malleable Commitments. DIMACS Workshop on Cryptography and its Interactions, Rutgers; *Jul 2016*.
- 28. How to Obtain Two-Message Non-Malleable Commitments. MIT Cryptography and Information Security (CIS) Seminar; *Jun 2016.*
- 29. Constructing Two-Message Non-Malleable Commitments. New York University Cryptography Reading Group; *May 2016.*
- 30. New Constructions of Non-Malleable Commitments. **Cornell Tech Cryptography Seminar**; *May 2016.*
- 31. Multi-party Key Exchange for Unbounded Parties from Obfuscation. **Stanford Security Seminar**; *Feb 2016.*
- 32. How to Generate and Use Universal Samplers. South California Theory Day, University of South California; *Nov 2015.*
- 33. Multi-party Key Exchange for Unbounded Parties from Obfuscation. SIMONS Berkeley Workshop on Securing Computation; *Aug 2015.*

Teaching

Teaching (continued)

Fall 2022	\diamond	Instructor, UIUC. Cryptography (Undergraduate) CS 407. <i>Listed among Teachers Ranked as Excellent by Their Students</i> .
Spring 2022	\diamond	Instructor, UIUC. Quantum Cryptography (Graduate) CS 598CTO.
Fall 2021	\diamond	Instructor, UIUC. Algorithms and Models of Computation (Undergraduate) CS 374.
Spring 2021	\diamond	Instructor, UIUC. Special Topics in Cryptography (Graduate) CS 598 DK. <i>Listed among Teachers Ranked as Excellent by Their Students</i> .
Fall 2020	\diamond	Instructor, UIUC. Applied Cryptography (Undergraduate) CS/ECE 498 AC (407).
Fall 2019	\diamond	Instructor, UIUC. Special Topics in Cryptography (Graduate) CS 598 DK. <i>Listed among Teachers Ranked as Excellent by Their Students</i> .

Students Advised

PhD	◊ Ruta Jawale, 2019-Present.
	◊ Amit Agarwal, 2019-Present.
	◊ James Hulett, 2020-Present.
	◊ Kabir Tomer, 2022-Present.
MS	◊ Andrew Liu, 2020-21. Secure and Scalable Robust Federated Learning.
	◊ Nishant Kumar, 2020-22. <i>New Frameworks for Quantum Oblivious Transfer.</i>

Current and Prior Research Support

2023-26	\diamond	NSF SaTC Small: "New Cryptographic Capabilities for a Quantum World" PI: D.K. <i>USD 571,719.</i>
2023-28	\diamond	NSF CAREER: "Cryptographic Proofs, Outside the Black-Box" PI: D.K. <i>USD 538,923.</i>
2021-23	\diamond	Visa Research Faculty Award PI: D.K. USD 150,000.
2021-24	\$	NSF MPS/Physics, "Pushing the Boundaries of Classical and Quantum Informa- tion Processing Toward Enhanced Security and Energy-Efficient Reliability". PI: E. Chitambar, co-PIs: L. Varshney, D.K. <i>USD 599,912</i> .
2020-24	\diamond	DARPA "SIEVE: New Directions in Post-Quantum Zero-Knowledge". PI: Amit Sahai, co-PI: D.K. <i>UIUC subaward: USD 423,422.</i>
2019-21	\diamond	C3AI DTI, Jump Arches , "Secure Federated Learning for Clinical Informatics". PI: O. Koyejo, co-PIs: W. Bond, D.K. <i>USD 100,000</i> .
2019-20	\diamond	Jump ARCHES , "Secure Federated Learning for Clinical Diagnostics". PI: O. Koyejo, co-PIs: W. Bond, D.K. <i>USD 60,000</i> .

Service

- Workshops \diamond Organizer of the Midwest Crypto Day, 2023- Present
 - ♦ Co-organizer of the STOC'22 workshop: "The Multiple Facets of Quantum Proofs"
 - ◊ PC co-chair of the Asiacrypt'22 Satellite workshop on Quantum Cryptography

- ITCS 2023
- ♦ STOC 2022
- ♦ TCC 2022
- ◊ ACM India Doctoral Dissertation Award Committee 2022
- ♦ STOC 2020
- TCC 2020
- ♦ ITCS 2020
- ♦ Indocrypt 2020
- ♦ Eurocrypt 2019
- UIUC Engg \diamond IQUIST (Illinois Quantum Information Science & Technology) Center. Science Advisory Board (SAB) Member, 2021-Present
 - ◊ IDEA (Inclusion, Diversity, Equity and Access) Institute. Affiliate, 2020-Present
 - - ♦ Tenure-Track Recruiting Committee Member, 2020-21, 2021-22
 - ◊ Graduate Study Committee Member, 2019-20, 2020-21, 2022-23
 - Rising Stars Workshop Mentor, 2019-20, 2020-21